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Abstract. Far 3 j  coefficients oPSU(2) two quantities, the degreen and the order m, are defined. 
The first. the (polynomial) degree n, is well known as the number of terms in the polynomial 
part of the single-sum expression of the 3 j  coefficient minus one. The second, the (recurrence) 
order m, is new. From an exhaustive computer search for non-trivial zeros of 3 j  coefficients, 
it follows thal both quantities play an important role in classifying the zeros. Explicit formulae 
for all zeros of order 1 are obtained and several new infinite sequences of zeros related to PeU 
equations are presented. 

1. Introduction 

For the 3 j  and 6 j  coefficients of SU(2), there exists a class of zeros which have been 
called 'non-tivial' or 'structural' zeros as opposed to the 'trivial' zeros resulting from a 
symmetry (3 j coefficient) or due to a violation of one or more triangle conditions (3  j and 
6 j  coefficient). In the encyclopedia volume The Rucah-Wigner Algebra in Quantum Theory 
(Biedenharn and Louck 1981), this subject appears as Special Topic 10. Some non-trivial 
zeros play a role in physics: the fact that the 6 j  coefficient 

(3:2 3:2 3:2) 

is zero implies that quadrupole radiation from an aligned state having j = 3/2 to a ground 
state j = 3/2 is isotropic; similarly, the zeros of 3 j coefficients of the form 

,L L 2u 
( 1  -1 0 )  

have been important in the investigation of whether competing radiations exhibit different 
angular distributions ( M e n  et ul 1951). These~examples motivated the systematic study 
of non-tiivial zeros (Biedenharn and Louck 1981). 
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Apart from this, there is also a mathematical motivation, since non-trivial zeros of 
3 j and 6 j  coefficients correspond to roots of special polynomials. Moreover, non-trivial 
zeros have appeared in relation to exceptional Lie groups and algebras (Koozekanani and 
Biedenharn 1974, Biedenharn and Louck 1981, Van der Jeugt et al 1983, De Meyer et al 
1984, Van den Berghe etal 1984, Van der Jeugt 1992), which seems to be another surprising 
relationship stimulating further research. 

Some studies in this area have been numerical in approach. Bowick (1976) shortened the 
tables of zeros for 3 j coefficients (Varshalovich etal 1975) and 6 j  coefficients (Koozekanani 
and Biedenharn 1974), taking into account the symmetries discovered by Regge (1958, 
1959). Here, all the symmetries will be taken into account. 

In a systematic approach, the non-trivial zeros of 3 j  and 6 j  coefficients can be classified 
by the minimum length of the single-sum expression for the coefficients. This minimum 
length corresponds to the number of terms when the coefficient is rearranged as a generalized 
hypergeometric series (Lindner 1985, Srinivasa Rao 1985, Srinivasa Rao and Rajeswari 
1985). The number of terms in this sum minus one will be called the degree of the 
coefficient (in some papers it is called the weight). Thus zeros of degree n (n z 0) are, 
by definition, non-trivial zeros. The zeros of degree 1 are quite easy to find for the 3 j  
coefficients and explicit expressions for them, not taking Regge symmetries into account, 
have been given by Varshalovich et a1 (1975). The zeros of degree 1 of the 6 j  coefficients 
have been studied by Brudno (1985), Brudno and Louck (1985), Bremner and Brudno 
(1986), Srinivasa Rao and Rajeswari (1987), and Srinivasa Rao et al (1988); here the most 
general parametrization requires a constraint equation amongst the parameters. Using the 
Pell equation, Beyer et a1 (1986) showed that there are infinite sequences of zeros of degree 
2 for 6 j  coefficients. Louck and Stein (1987) obtained the same result for 3 j  coefficients. 
Algorithms for these two cases were obtained by Srinivasa Rao and Chiu (1989). For the 
zeros of 6 j  coefficients of higher degree, Brudno (1987) found special cases where the Pell 
equation can be used to generate them. 

The original motivation for the present paper was an investigation of the distribution 
of the zeros of 3 j coefficients with respect to their degree n and the sum J of the angular 
momentum quantum numbers involved (this sum is invariant for Regge symmetries), by 
means of a greatly extended computer search. For low angular momenta, we originally 
used integer arithmetic developed to compute coefficients of point harmonics for the cubic 
group by Conte and Raynal (1985) and for the icosahedral group by Raynal(l985). Such 
calculations are very slow and also l i i t e d  in size by the fact that only prime numbers 
smaller than 200 are used to represent integers. We realized that such a slow technique is 
not necessary: the polynomial part or series expression of these coefficients is an alternating 
sum, and the result obtained with floating-point operations divided by the sum of the absolute 
values of the terms in the series must be smaller than the precision of the computer if the 
coefficient vanishes. Candidate zeros were first selected using the usual double precision; 
then quadruple precision was used to verify them. With quadruple precision, calculations 
are so accurate that no doubt exists about whether a candidate zero is identically zero or 
whether it is just a very small number, in the domain which has been scanned here. The 
thresholds were generally set to for quadruple precision 
on a Convex computer. 

The first computer search for the zeros of 3 j  coefficients with J 6 240 gave many 
zeros of high degree. However, inspection showed that most of these can be written with 
small magnetic quantum numbers. This observation was the starting point for this work, 
indicating that apart from the degree n a new quantity, the order m, can be introduced to 
classify the zeros of 3 j coefficients. 

for double precision and 
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In section 2, the notation for 3 j coefficients is su"arized. Some sets of 3 j coefficients 
which never vanish are discussed in section 3. In our terminology, these are 3 j coefficients 
of order 0. In section 4. we show how recurrence relations can give zeros near the 
coefficients of order 0 and define the order m of a zero. In section 5 ,  the equations for 
zeros of order 1 are solved and these are given explicitly. Section 6 presents partial results 
for zeros of order 2 and 3, and in section 7 some further results are deduced by inspecting 
explicit computer lists of~zeros. In particular, some new infinite sequences.of zeros are 
presented. For 6 j  'coefficients, a similar search for the zeros has been made and thii will 
be the subject of a following paper. 

2. Expressions for the 3j Coefficients 

The 3 j coefficient of'SU(2) is conveniently expressed as a generalized hypergeometric series 
3Fz[ll: 

(z ;) = C3F2[-a - b + c,  -b - ,6, -a +-a; -a + c  - B + 1, -b+ c +  -a + 1; 11 

(1)~  

where C is some non-zero factor. Whipple (1925) studied the different aspects of such 
generalized hypergeometric series by introducing six parameters ri (i = 0, 1, . . . , 5 )  the 
sum of which is zero. All the symmefxies of the 3 j  coefficients can be deduced from 
his results and a complete list of the 3Fz[l] applied to this problem was given by Raynal 
(1978). However, for our purpose, we shall use the 3 x 3 square symbol introduced by 
Regge (1958): 

-a+b+c  a - b ~ + c  a + b - c  
b+B C + Y  1 (2) (: ; ;)=I a + - a  a- -a  6-,6 C - Y  

in which the sum in any row or column is J = a + b + c. The transposition and any 
permutation of rows or columns correspond to the same value of the 3 j coefficient, up to 
a sign. Thus the 3 j  coefficient possesses 72 symmetries. The smallest integer n in this 
symbol defines the 'degree' of the 3 j coefficient and the number of terms of the F2[ 11 in 
(1) w i l lben+ l .  

In the process of listing all the 3 j coefficients of degree n for a given value of J ,  it is 
useful to avoid duplication of coefficients which are related by any of the 72, symmetries. 
For this purpose, we shall only consider Regge symbols of the following form: 

J - x - y  =C'3F2[-n , -y , - z ;x -n+l , t -n+1;  11 (3) 
J - z - t  I1 I I J - ; - z  J - y - t  

Y 
f 

with 

x + y + z + f = J + n  x > y > z > n  n > : t > n  ( z > f i f x = y ) .  (4) 

Using the Regge transformations, every symbol can be written in this standard form. Bowick 
(1976) used the parameters [x ,  t ,  n,  y - n, z - n] introduced by Bryant and Jahn (1960) to 
define independent 3 j coefficients, with similar conditions. 
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Using the notation 

( X ) - i  = x ( x  - 1 ) .  . . ( x  - i + 1) 

we obtain the symmetric expression 

(5) 

The expression for a 3 j coefficient in terms of a 3Fz[l] series is not unique. The same 3 j 
coefficient can be written by means of different &[1] series, all involving at least the same 
number of terms. Fkynal (1978) has summarized all these expressions. One of the nine 
formulae in Raynal(1978) or one of the seven formulae listed by Varshalovich et al (1975) 
is of special interest in the search for zeros. It has previously been obtained by Bandzaitis 
and Yutsis (1964) and reads here as 

3Fz[-n, -z, -.I - 1; -Z - X ,  -Z - t ;  11. 

When rewriting this as an alternating sum of integers as above, one can see that J + 1 is a 
factor in all these integers, except the first. Therefore, if J + 1 is a prime number, the sum 
cannot vanish. This result was also obtained by Bryant and Jahn (1960). 

3. Non-zero 3j coefficients 

Motivated by the fact that many of the non-trivial 3 j coefficients of high degree n seem to 
have an expression with small magnetic quantum numbers, we approached the study of the 
zeros from a different viewpoint. In this section we list four sets of 3 j  coefficients which 
never vanish; they will be called 3 j coefficients of order 0. In the following section we 
shall see how non-trivial zeros of order m > 0 can be related to these non-vanishing 3 j 
coefficients of order 0. 

When n = 0, the 3 j coefficient reduces to a non-zero constant. But the expression for 
the 3 j coefficient also reduces to a single term when x = z and y = t (the two last rows 
of the Regge symbol are then equal) because the generalized hypergeometric series can be 
summed with Dixon's theorem pixon 1903). Two other theorems due to Whipple and 
Watson, quoted by Erdelyi (1953). give the same result when applied to other expressions 
for the 3 j coefficient. Using Dixon's theorem (cf (4.4.5) in Erdelyi 1953) we get the result: 

3Fz[-n, - x ,  -y; 1 - n + x ,  1 - n + y ;  11 

1. (6) 
1 - 4 n , 1 - 4 n + x + y , I - n + x , l - n + y  
1 - n, 1 -n  + x  + y. 1 - i n  +I, 1 - p + y 1 = r (  

With 

a = x  b = y  c = x + y - n  2 p = a + b + c = J  

one gets, after some simplification, the well known result for the 'parity' 3 j coefficient: 

(7) 
( 2 p  - 2a)!(2p - 2b)!(2p - Zc)! "' P !  

(0 0 0) =(-IP[ (2p + l ) !  1 ( p  - a ) ! ( p  - b ) ! ( p  - c)! 
a b c  
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if J is even, and 

(: t; :)=o 
if J is odd. So, if two rows or two columns of the Regge symbol are identical and if J 
is odd, the 3 j coefficient vanishes: it is a 'trivial' zero. In contrast, if J is even, the 3 j 
coefficient cannot vanish. 

There are other sets of non-zero coefficients which can be deduced from this one by 
means of recurrence relations. Among them are the 3 j coefficients with magnetic quantum 
numbers 4z: used to obtain matrix elements for particles of spin $ in the helicity formalism 
(Raynal 1967). Using, for example, the relation (A7) in Raynal(1979), one can deduce that 
(for b integer, a and c half-integers): 

Again with a + b + c = J = 2 p ,  we get 

(2p - 2a)!(2p - 2b)!(2p --2c)! e: : ;> = [ (2a + 1)(2c + 1)(2p + l)! 
2 p !  

( p  --a - i ) ! ( p  - b)!(p -c- i)! X 

if J is even, and 

2@ + $! 
X 

( p  - a ) ! ( p  - b - i ) ! ( p  - c)! 

if J is odd. None of these coefficients can vanish. 

can be obtained. From (A7) in Raynal (1979) one can also deduce that 
Another set of non-zero 3 j coefficients for a, b and c integer and J = a + b + c odd 

This gives 
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valid only for J = a + b + c odd. 
The non-zero 3 j  coefficients of formulae (7), ( lo) ,  (11) or (13) will be relevant in 

studying non-trivial zeros with small magnetic quantum numbers. 
It should be noticed that the exprcssions given here are not new: e.g. (13) can be obtained 

from equation (1.52) in Rotenberg et al (1959) or from equation (3.7.15) in Edmonds 
(1960), who used this in his derivation of the parity 3 j  coefficient. More recently, Rashid 
(1986) rederived relation (13) using a complicated transformation between hypergeometric 
functions. Some other formulae in the following section (but not all) have also been obtained 
by Rashid. 

4. The order m of a 3j coefficient 

To define an order m, we consider recurrence relations between three 'contiguous' 3 j  
coefficients as defined by Raynal(1978) (this is a generalization of~the notion of contiguous 
hypergeometric functions). The threeterm recurrence relation which will be used here is 
(Raynal 1979, part of equation (A7)) 

S ( a , b , c , a , B , y ) =  i ( u ( a +  l ) + b ( b + I )  - c ( c + l ) ) + a B + ~ ( a - ~ )  

T ( a , b , a , B )  = ( (a+a)(a-a+l) (b-B)(b+B+l) ) ' i z .  

Now the notion of order will be introduced. The non-zero 3 j  coefficients of formulae 
(7), (10). (11) and (13) will be called of order m = 0. Using the recurrence relation (14) 
once, for chosen values of (a,,!?, y),  one obtains up to six sets of 3 j  coefficients which 
can be expressed in terms of those of order 0. These 3 j  coefficients will be called of 
(recurrence) order m = 1. They are-the following. 

(i) Setting a = ,!? = y = 0 in (14), and using a symmetry for the 3 j  coefficient, we 
get, for even J ,  
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(ii) Setting (or, 6, y )  = (0, 1, -1) in (14)  and using the symmetries of 3 j  coefficients 
and (S), we get two relations, both valid only for odd values of J. They are 

For (17) a zero can be found only for a = b and it is a trivial zero, since J is odd. 

c) ,  we get five new relations. They are 
(iii) Setting (a, 6, y )  = (0, i, -i) (and using symmetries and relabellings for a, b and 

a(a 4- 1) - b(b+ 1) - C ( C f l )  - (b f i ) ( C +  $) + 4 a b (E 1 :J= ( (b -$ ) (b+ ; ) (C-  i ) (c+y) l  3 I12 (0 4 :;) 

(E 1 :;)= (E 2;) 

( J  even) (18) 

a(a + 1) - b(b + 1) - c(c + 1) + (b + $) (c  + $) + 1 
{(b - 4x6 + ;xc - ;xc + 3 ?)I 112 

(J odd) (19) 

For equation (22) a zero can be found only when a = c and J is odd. However, that 
would be a trivial zero. This relation has been used by Raynal (1967) to express all the 3 j 
coefficients which appear in the helicity formalism with formulae (IO) and (11). 

(: ; ;)of Table 1. The type and corresponding vanishing condition for a 3 j  coefficient 

order I,  with J = a  + b + c and K = &+ I )  - b(b'+ I) - c(c + I). is given. Some further 
constmints are posed in order Io have a unique classification of order 1 zeros. In the last two 
columns, the number of zeros of degree larger than I obtained for each relation up to I = 300 
and I = 3000 is given. 

Type a ,9 y J Condition Constraints <300 <30W 
I 0 I -I Even K = O  a > b > e  68 " I144 
IL 0 2 -2 Odd K + 2 = 0  a , b > e  61 1081 
III ~0 3 2 - 3  Even K + i - ( b + f ) ( c + $ j = O  n > b > e  50 934 
IV 0 $ - f  Odd K + f + ( b + i ) ( c + i j = O  b > n > c  50 934 

V 4 I -: Even ( a + f ) ( a + c + l ) - b ( b + l ) = O  a # c  62 1211 
VI 1 1 -- Odd ( a + f ) ( a - c ) - b ( b + l j = O  a # c + 2  115 2165 

( a b )  # (c+ f,c+ 1 )  
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Clearly, equations (15), (I@, (18)<21) give the zeros of the 3 j  coefficients of 
(recumence) order 1. The conditions for these cases, labelled by @)-(VI), are summarized 
in table 1. Herein, some further constraints are needed to have a unique classification of 
order 1 zeros. For example, (a, b, c )  = (c + 4, c + 1, c) is seen to be a solution for the 
condition (N), however it follows from the Regge symbol that this corresponds to a trivial 
zero and hence has to be excluded. Similarly, for those solutions of condition (V) with 
a = c the Regge symbol can be transformed in such a way that it actually corresponds to 
a zero of type (I). 

The 3 j  coefficients of order 2 are obtained with recurrence relations involving 3 j  
coefficients of recursion order 0 and 1 for the two other members in (14). More generally, 
the 3 j coefficients of order m are obtained with recurrence relations involving 3 j coefficients 
of order m - 2 and m - 1 for the two other members. In order to characterize the order 
m in another way, consider the Regge symbol associated with a 3 j symbol. In this Regge 
symbol, perform a transformation bringing the two rows or two columns with minimum 
absolute difference (this is the sum of the absolute values of the differences member by 
member) to the last two rows. Then, in the correspondence (2). one has: 

(iv) if 01, B and y are all integers 

m = max(la1, [@I, Iy l ]  

m = max(lrr1, IS!, Iyl] - 1 

(v) if 01, p and y are not all integers 

if J is even 

if J is odd 

m = LmaxIl4 IBL IvlH 
where LxJ stands for the integer part of x .  

Note that this definition gives the order m = -1 for the trivial zeros. 
A complete classification for 3 j  coefficients of order 2 and 3 has also been obtained. 

For order m = 2 there are 12 types and for m = 3 there are 17 types. Rather than give 
all these expressions here, we shall only discuss a few typical examples in section 6. The 
reader interested in the explicit conditions and solutions is referred to a separate report 
(Raynal and Van der Jeugt 1993). 

5. Parametrization of zeros of order 1 

The six types of 3 j  coefficients of order 1 have been labelled (&(VI) in table 1. The 
corresponding expressions in the fourth column of table 1 give the conditions under which 
a 3 j  coefficient of order 1 is non-trivially zero. These six conditions are quadratic in 
the angular momentum quantum numbers a, b and c and, in fact, they are quite easy to 
solve explicitly. As a consequence, a complete parametrization of zeros of order m = 1 is 
obtained in this section. 

Consider first the 3 j  coefficients of order 1 and of type (I). Using 

K = U(U + 1) - b(b + 1) - C(C + 1) (23) 

the condition is K = 0, which can also be rewritten as (a - b)(u + b + 1) = c(c + 1). 
Hence there exist two integers p i q without common divisor such that 

a - b : c +  1 : p = c : a+ b+ 1 : q,  
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Since (a - b)q = pc,  c is a multiple of q. say c = Gq. Substituting this in 
(c + 1)q = (a + b+ l)p, it follows that Gq + 1 must be a multiple of p ,  say Gq + 1 = g p .  
Thenthetworelationsyielda= ; (pG+qg-l)  andb=$(qg-pG-1). Toparametrize 
these solutions, let G I  and gl be the smallest (non-negative) values of G and g satisfying 
Gq + 1 = gp ,  and let G = G I  fx and g = gl + y .  It then follows from Gq + 1 = g p  that 
xq = y p ,  so that x = r p  and y = r q  for some non-negative integer r .  

To summarize, the zeros of type (I) can be parametrized as follows. Let p < q be 
positive integers without common divisor, let GI be @e smallest non-negative number for 
which Glq + 1 is a multiple of p ,  and put gl = (Glq + l ) / p ,  then 

a =  ~ [ ( p Z + q 2 ) r + q g l + p G ~ - ' 1 1  b = $ [ ( q Z - p 2 ) r + q g l - p G 1  -11 

c = pqr  + @I 

is a complete parametrization, with r any non-negative integer. 
Another solution is found by exchanging c and c + 1. Then there are positive integers 

p < q without common divisor such that q(a - 6) = p ( c  + 1) and p(a  + b + 1) = qc, and 
one obtains the following parametrization of zeros~of type (I): 

(24) 
J = ( p  + q) (qr  + g d  - 2 ' n = (q - p ) ( p r  + GI) 

a = $ [ ( p 2  + q2)r + qhl + pH1 - 11 b = l [ (  q - p2)r  + qhl - P H I  - 11 
(25) 

c = pqr + phi 

where r is any non-negative integer, and H1 and hl are the smallest values satisfying 
H q  = hp + 1. This shows that every zero lies on two distinct infinite sequences. Indeed, 
all zeros found by means (25) for some ( p ,  q ,  r )  value also appear in the zeros generated 
by (24) for some different values (p', q', r'). As a complete parametrization of the zeros of 
type (I), it is sufficient to use only (24). 

Such an analysis can be performed for all the cases, giving rise to a complete 
parametrization of the zeros of 3 j coefficients of order 1. This method works bere for all 
cases since the corresponding condition can always be rewritten as a quadratic multiplicative 
Diophantine equation of the form X I X Z  = u1uZ; such equations have also been studied by 
Bell (1933) and Srinivasa Rao et al (1992). 

The zeros of order 1 fall apart into six types, each type providing two infinite sequences 
of solutions. Since the goal is to parametrize the solutions completely, we give only one of 
the two sequences here. 

In order to give the parametrizations explicitly, we define the following numbers. Let 
p and q be positive numbers without common divisor, with p < q. For k a positive 
integer (we shall only need the cases ki = 1,2,3),  two non-negative numbers Gk and gk 
are determined: Gk is the smallest number for which Gkq + k is a multiple of p and gk 

We now summarize the parametrizations for the six different types. 
For relation (I) a parametrization has been given by (24). The constraint b 3 c 

corresponds to the limitation q 2 (1 + A ) p .  The. parity of J excludes q even and 
the necessity to obtain integer values for a and b also excludes p even, so p and q should 
be odd, with any value of r starting from 0 if p # 1 and from 1 if p = 1 because c = 0 
for r = 0 in this case. 

The relation (E) can be written as (a - b)(a + b + 1) = (c - l)(c + 2), that is 
q(a - b) = p ( c  - 1) and p(a + b + 1) = q(c + 2), giving the solution 

a = $ [ ( p 2  + q2)r + qg3 + pG3 - 11 
c = pqr  + qG3 + 1 

J = ( p  + q)(qr  + h d  - 1 n = (q - p) (pr  + HI) - 1 

follows from g k P  = Gkq + k. One can verify that gg = kgl mod q and Gk =.kG1 mod p .  

b = '[( q - ~ ~ ) r + q g 3 - ~ ~ 9 - 1 1  
(26) 

J = ( p  + q)(qr + g3) - 3 n = (q - p ) ( p r  + G3) + 1. 
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The condition b > c gives the limitation already obtained for 0. The parity of J excludes 
q even and the necessity to obtain integer values for a and b also excludes p even, so p 
and q should be odd, with any value of r starting from 0 if p # 1,3 and from 1 if p = 1 
or p = ~ 3  because c = 0 for r = 0 in this case. 

Relation (m) can be written as the following multiplicative equation: 
I (Za -2b - c - $)(24 + 2 b + c +  z) = 3(c+ $)(c - I) 

that is q(20 - 2b - c - i) = p(c  - i) and p(2a + 2b + c + 2) = 3q(c + i), giving the 
solution 

4 = 3(3q2  + p2)r  + 3qgz + P G ~  - 21 

b = $[(q  - pX3q + p ) r  + (3q - 2p)gz - PGZI 

J = 4(3q + + gd - 2 

c = p q r  + qGz + 4 (27) 

n = ;(q - p ) ( p r  + Gz) 

where p and q are not multiples of 3. The constraint b > c corresponds to the limitation 
q > (1 + m p .  Here, q and p must be odd; if q - p is a multiple of 4, all the values 
of r are allowed; if this value is twice an odd number, r is restricted to the parity of gz. 

Relation (IV) can be rewritten as 
1 (2a - 2b + C +  +2b - c +  4) = 3(c+ $)(c - 7) 

that is q(2a - 2b + c + i) = p(c  - 4) and p(2a + 2b - c + $) = 3q(c-+ $), giving the 
solution 

a = $(3q2 + p2)r  + 3qgz + PGZ - 21 

b = a[(q + pK3q - p ) r  + (3q + 2p)gz - qGz - 41 
c = pqr  + qG2 + $ 
where p and q are not multiples of 3. The constraint b > c corresponds to the limitation 
q > p .  Here again, q and p must be odd; if q + p is a multiple of 4, all the values of r 
are allowed; if this value is twice an odd number, r is restricted to the parity of gz. 

Relation (V) can be written as (a + $)(a + c + 1) = b(b + I), that is q(u + i) = pb 
and p(a  + c + 1 )  = q(b + l), giving the solution 

4 = p r + p G 1 -  4 

(28) 

J = q(p + p) (qr  + gz) + 1 n = $(q + p ) ( p r  + Gz). 

Z 2 2  b = p q r  + qGI c = (q - p ) r  +qgl - pG1- $ 
(29) 

J = (P + q ) ( q r  + g d  - 2 n = (4 - p) (qr  + a ) .  

The triangular relation a + b < c implies q 6 2p. The parity conditions imply that q is 
odd, and if p is even then r + gl should be odd. 

Relation (VI) can be written (a + $)(a - c) = b(b + l), that is q(4 - c )  = pb and 
p(a  + 4) = q(b + l), giving the solution 

2 2 a = q r +qgl - $ 
J = (2q - p M q  + p ) r  +gl + G I ]  

b = pqr  +qG1 c = (q - p2)r+qgl -pG1 - i 
(30) 

There is no limitation other than q > p .  The parity conditions imply that p is odd and, if 
q is even, then r + G1 should be odd. 

All the zeros of order 1 of the 3 j  coefficients are given by the above formulae as 
functions of the three parameters p ,  q and r ,  subject to the restrictions. 

II = (4 - p ) ( p r  + W. 
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6. On zeros of order 2 and 3 

In the previous section, we have shown that the equations for the zeros of order 1 can easily 
be solved. The equations for zeros of order m z 1 are definitely more difficult to tackle. 

There are 12 types of zeros with order m = 2, and 17 types of zeros with order m = 3. 
These types are summarized in tables 2 and 3, respectively. For m = 2 and 3, we do not 
explicitly give the corresponding Diophantine equation here; this can be found elsewhere 
(Raynal and Van der Jeugt 1993). However, we do include the degree of this equation, and 
the number of solutions for J < 300 and J < 3000. . 

of order 2, with J = ~2 + b + e. The Table 2. The types of 3 j  coefficients 

corresponding vanishing condition is not given explicitly. The last three columns show the 
degree of this equation, and its number of solutions for J < 300 and for J $ 3000. 

~~ 

(: B 3 
Tvoe ' a 6 Y J Deem 6300 63000 

2.1 0 2 -2 Even 4 14 19 
2.2 I I -2 Even 4 1 2 
2.3D.4 0 , -2 ~ Evelllodd 4 6/12 10/17 
2.5D.6 I 4 -2 . Evelllodd 4 U3. 7/15 
2.7D.8 $ ~ 4 -2 Evedodd 3 7/25 31fZ14 
2.9fZ.10 2 -2  Even/odd~ 4 6/16 13/30 
2.11 3 -3 Odd 4 a 12 
2.12 I 2 -3 Odd 4 0 2 

Table 3. The types of 3j coefficients (: ~ ) o f o r d e r 3 , w i t h I = a + b + e .  The 

corresponding vanishing condition is not given explicitly. The last three columns show the 
degree of this equation, and its number of solutions for I $ 300 and for I < 3000. 
Type  BY J Degree <300 $3000 

3.1 
3.2 
3.3n.4 
3.33.6 
3.7B.8 
3.9M.10 
3.11/3.12 
3.13/3.14 
2.15 
2.16 

0 3 -3 Even 
1 2 -3 Even 
0 3 -3 Evelllodd 
1 ~2 -3 Evedodd 
' I -3 Evdodd  5 

4 3 -; Evedodd 
2 -f Evelllodd 

0 4 -4 ~ Odd 
1 3 -4 Odd 

3 I 3 -3 Evdodd  

6 a 10 
6 4 4 
6 7/11 12/14 
6 0/1 , 0/3 
5 ~ .  6/18 8/25 
4 7/1 17/3 
6 9 D l ~  13/34 
6 4/3 ~ 5/4 
6 6 5 
6 0 0 

2.17 2 2 -4 Odd 4 2 a 

The actual Diophantine equations can be found using reckrence relation (14). For 
example, setting (or, ,9, y )  = (0, 1, -1) in (14) for J even yields, after some algebraic 
manipulations, 

K ( K  +2) - 2b(b + I)c(c + 1) = 0 * (" -2 c ) = o  
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where K is given in (23). This is the equation for zeros of type (2.1); the remaining 
equations are found similarly. Just as in the case of order 1, there are certain constraints. 
For example, for type (2.1) described in (31). c # a since for c = a  we have 

( U  
b ~ ) = ( b  a + l  U - 1  

0 2 -2 0 1 -1 

and it would correspond to a zero of order 1, of type (I). There are a number of other 
constraints which we do not list here. 

In contrast to the situation of order 1, we have not succeeded in giving all solutions for 
the zeros of order 2, except for Zeros of type (2.7) and (2.8). For the other types except 
(2.9), we can always give infinite sequences of solutions, however these do not produce all 
solutions. For example, we cannot solve the equation of (31) completely, but the following 
describes two infinite sequences of twin solutions: 

a = ( Y 2  i Y +2)/2 b = (Y2  Y ) / 2  c = (X - 1)/2 

where X and Y are two integers satisfying the following Pel1 equation 

X 2  - 8Y2 = 17. (33) 

If (Xn, Yn) satisfies (33). then so does (Xn+1, Y,+I) with 

X.+i = 3Xn + 8Yn Yn+l = x, +3Y*. 

Since for any value of (Xn, Y,,) there are two zeros, one can generate two sequences of twin 
zeros with initial starting values (XO, YO) = (5, I) and (XO, YO) = (7,2). This shows that 
there are an infinite number of zeros of order m = 2 of type (2.1). 

The zeros of type (2.7) and (2.8) deserve further attention, since in this case a complete 
solution can be given. We describe here only the ones of type (2.7); (2.8) is similar. For 
(2.7), .I even, the Diophantine equation is 

Let p > q be two integers without a common divisor. Using a + = p Y ,  b+ 4 = qY and 
2c + 1 = X/p, the condition can be rewritten as 

(35) xz - 4p@ - q ) ( p  + q Y Y *  = P ( 5 P  +4qh 

For every p and q this is a Pel1 equation in X and Y, and sequences of solutions can be 
obtained as for the Pel1 equation (33). Every zero of type (2.7) belongs to such a sequence, 
for some p and q .  

The situation for zeros of order 3 is similar to that of order 2. Here, none of the 17 types 
has been solved completely, but for some types we were able to show that they possess 
infinite sequences of solutions, related to some Pel1 equation. We give one example here. 
For zeros of type (3.9). with J even, the equation can be written in the following form: 

[U(U + 1) - b(b + 1)](K + 1) - (b - $)(b+ $)(c - l)(c + 2) + C(C+ I)(u - b)(b + 4) 
=o=.(; a b  ; - 3 ) = o .  c 
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Table 4. The number of ~ I O S  of degree n for 3 j  coefficients as a function of J = a + b i c 
is the sum of the two figures given in this mble. The second figure is the number of m s  of 
Orde r  m < 3. 

J n = l  n = 2  n = 3  n = 4  n = 5  n = 6  n = 7  n = 8  n = 9  n = l O  n=ll 

1-30 13,19 4.9 0.0 0 . 2 . 0 . 0  0,O 0,O 0.0 0.0 0.0 0,O 
31-60 138.31 34.26 13. 8 7. 8 3.2 0.4 0. 1 0.6 0. 3 0.0 
61-90 334, 35 
91-120 552.32 
121-150 725, 32 
151-180 1034, 32 . 
181-210 1336,32 
211-240 1513. 32 
241-270 1785, 32 
271-300 2239, 3 5 ~  
301331 2375, 32 
331-360 2726,32 
361390 2995.32 
391420 3425,32 
421450 3658,32 
451480 3985.32 
481-510 4228.35 
511-540 4716, 32 
541-570 4770, 32~ 
571400 5500, 32 
601630 5790, 32 
631660 5852. 32 
661690 6289. 32 
691-720 6895, 35 
721-750 6915. 32 . 
751-780 7536, 32 
781410 7558, 32- 
811-340 8585, 32- 
841-870 8314, 32 
871-900 9088,~32 

65, 19 
128, 17 
101, 13 
150.20 
182. 10 
184. 8 
147,4 
283, 5 
176, 3 
198. 2 
250.5 
247, 2 
236, 0 
276, 0 
263, 5 
282, 1 
281,O 
266.1 
320,O 
281,O 
279, I 
324, I 
304,O 
285,O 
299, 2 
323,o 
356, 0 
343.0 

29.6 15.8 5,3 0,s 1.1 0,9 0.1 0,3 
39.5 17.5 4.0 2,s 0.0 2.7 0.1 0,6 
37,o 9.1 2 . 0  1.3 I , , I  0 , 4 , 1 , 1  0.2 
47.2 17,l 7.0~ 0.1  1.0 0 ,3  0,O 0.4 
40, l  20.1 6.0 2 .2  4.0 0.4 0,O 0.4 
43.0 7.2 3.0 0.1 0,o 0.0 0,o 0.2 
4 6 , l  12.0 1.1 1.0 0,I  0.0 0 ,o  0.0 
58,O 9.0 6,O 2,l 1 , O  0.1 0.0 0.5 
35,o 12.0 3 ,o  0.1 0,o 0.0 0 ,o  0.1 
51,o 8 , l  2.0 2.0 1 , l  0 ,o  0,o 0,o 
36.0 17.0 ~ 1 . 0  0.0 0,O 1.1 0,O 0.0 
52,O 6,O 0,O 0.0 0,O 0 ,1  0,O 0 , l  
40,O 7,O 2.0 0,O 0,O 0.0 ~ 0 . 0  0,O 
47,o. 8.0 0.0 0 ,o  0 , o  4 , 0  ~ 0 . 0  0,o 
56,O 14.0~ 5 , O  2.0  0,O 0.1 0,O 0,O 
50.0 14.0'7.0 1.0 0.0 0,O 0,O 0,O 
56.0 ~14,O 4,O 1, l  0.0 0,O ~ 0 , O  0,O 
46.0 7.0 2 ; O  0 , l  0.0 0 , O  0.0 0 , l  
47.0 8,l l,o 0,o 0.0 0.0 1.0 0 , l  
42.0 5.0 0.0 0.0 0.0 0.0 0.0 0.0 
42.0 10.0 3.0 .  0.0 1,O 0.0 0.0 1,0 
51 ,O 6,0-1,0 0 , O  0,O 0.0 0.0 0.0 
56,O 4.0 0.0 0,O 0.0 0.0 0,O 0 , l  
40.0 5.0 0.0 0,O 0.0 0,O 0.0 0,l 
61.0 15.0 1.0 0.0 0,O 0.0 0,O 0,O 
39,O 4,O 1,O 1,0 0,O 0,~O 0,O 0,O 
41,o 4,o 1.0 0,o 0 ,o  0.0 0,o 0.0 
43,o ~ 3 , O  1.0 0 , o  0 ,o  0.0 D,O 0.1 

A sequence of solutions is given by 
U = (2X + 1)/6 b = (X + 2)/6 c = (Y - 1)/2 

where X and Y ace two integers (with X mod 6 = 1 a id  Y odd), satisfying the following 
Pel1 equation 

(37) X 2  - 3Y2 = -26. 

X"+1 = 7x. + 12Y" 
If (Xn, Y,) satisfies (37), then so does (Xn+,, Y,,+,) with 

Yn+l = 4X" + 7Yn 
and, moreover, Xn+l mod 6 = 1 and YS+l is odd. Here, one can generate two sequences of 
solutions with initial starting values (XO, YO) = (43.25) and (XO, YO),= (109,63). 

7. Further results and comments 

The zeros of low degree n < 12 have been found up to J = 900 and their number is given 
in table 4. From this table, one can indeed verify that the majority of zeros of high degree 
n seem to have low order m. In this section, we shall discuss some further results which 
follow from the table and from explicit lists of structural zeros. 
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The parameters x ,  y ,  z and t of (3) will be used here. However, for the convenience of 
discussion, we shall not use the restrictions (4) which were introduced to take into account 
symmetries: x and t ,  y and z, and also the couples ( x ,  t )  and ( y ,  z), may be interchanged. 

The zeros of degree n = 1 are obtained by the equation xt  = yz. They can be written 
as 

where p and q are two integers without a common divisor, d is an integer or half-integer 
larger than 1 and 161 < d with d + S integer. The value d = $ gives only 3 j  coefficients 
of degree 0, which cannot vanish; the valued = 1,s = 0 gives a trivial zero. Note that the 
value J + 1 = a + b + c + 1 = Z(p + q)d must be divisible by 2d > 2 and thus cannot 
be twice a prime number. From J = 8 onwards, there exist zeros for all the values of 
J + 1 which are not a prime number nor twice a prime number. For J < 900, there are 
121 827 of them. The maximum number of zeros obtained for a single value of J is 1048 
for J = 839. 

There are 7021 zeros of degree n = 2 for J < 900. For a fixed value of J, there can 
be many of them: up to 73 for J = 594 and for J = 714. The zeros of degree 2 have been 
studied by Louck and Stein (1987) who obtained infinite families with fixed values for two 
parameters, one of each set ( x ,  t )  and ( y ,  z). 

There are 1306 zeros of degree n = 3 for J < 900, for 441 different values of J. From 
the list of zeros, we noticed that 422 of them satisfy the relation x ( t  - 1) = ( y  - l)(z - 1). 
Introducing two integers p > 4 without a common divisor and writing x = p ( y  - l)/q, 
z = 1 + p ( t  - I ) /q ,  the condition for a zero of degree n = 3 reduces to the simple equation 
( p  + 2q)t = ( p  - q)y .  Hence we put 

~~ 

g 
~ = .- 
P - 4  h 

where g > h has no common divisor. Then t = Sh and y = Sg for some integer 
S; substituting this in the expressions for x and z yields x = p ( S g  - l ) / q  and z = 
1 + p(Sh - l)/q. Since x and z should also be integers, let s be the smallest integer such 
that q is a divisor both of sg - 1 and of sh - 1. Then S = s + rq, with r any integer, gives 
the most general solution: 

x = p( (a  - Wq) + r ( g p )  Y = sg + r(g4) 
z = 1 + p((sh - l ) / q )  + r(hp) t = sh + r(hq).  

This is a parametrization for a large class of degree 3 zeros, and shows that there are infinite 
sequences of zeros with n = 3. 

There are 314 zeros of degree n = 4 for J < 900, 30 of which have order m < 3. For 
degree 4 we were also able to deduce two infinite sequences of solutions from inspection 
of the explicit list of zeros. We give one example here: 

J=$(d+2)(3d+ll)  x=i(d+1)(3d+2) y=3d+5 z = 3 d  t = 9  

where d > 2 is an integer. 
There are 78 zeros of degree n = 5 for J < 900, of which only six have order m < 3. 

As the degree n increases, one can see from table 4 that the number of zeros with order 
m > 3 decreases very rapidly. F0r.J < 900, this number is 15, 10,3,2, 1 and 1 for zeros of 
degree n = 6,  7, 8, 9, 10 and 11 respectively. The corresponding zeros are given explicitly 
in table 5. For n > 12, no zeros with m > 3 have been encountered for J < 900. 
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Table 5. Zeros of 3 j  coefficients of order m > 3 and degree 6 6 n 6 11 with I < 900. If 
n =- m the 3 j  wefficient corresponding to the Regge symbol (3) is given in the last wlumns. 
If n < m. it is replaced by the 3 j  wefficients with the smallest magnetic quantum numbers. If 
m = n, the two cmfficientr given. 

J m n  x Y Z  f~ a 6 c = B  Y 

97 5 6 35 25 17 ~ 2 6  $ 30 $ 1 
7 6 38 32 ' 21 35 E 57 - 2  -7 

1:. I1  

189 47 6 132 43 13 7 y  25 y +? 18 -y 

-5 
120 
134 5 6 46 35 24 35 64 . y  0 T - T ~  

200 35 6 119 60 19 8 69 34 97 50 26 -76 
185 259 87 6 189 36 3 1 ~  9 110 2 2 3  79 27 -- 2 
205 287 65 6 186 63 26 18 106 y 80 -T 

-26 288 10 6 95 78 62 ~ 5 9  141 
338 54 6 189 95 37 23 113 59 166 76 36 -112 

161 8 6 136 121 40 56 88 7 48 % -- 2 347 
494 41 6 246 164 44 46 145 105 244 101 59 -160 
494 40 6 261 185 29 25 145 105 244 116 80 -196 
531 104 6 288 130 85 34 82 .y 48 -299 2 

560 12.5 6 378 143 30 15 204 79 277 174 64 -238 
832 249 6 630 157 38 13 334 85 413 296 72 -368 
89 9 7 39 22 18 17 41 a 2 5 -13 

7 7 52 39 23 38 9 9 69 2 -I5 145 

177 7 7 ~ 69 54 23 38 46 46 85 23 8 -31 

186 29 7 117 58 9 

-z 
165 208 62 7 156 34. 14 11 85 71 2 -- 

209 13 7 64 . 61 32 59 48 60 . 101 16 1 -17 
289 77 7 188 48 38 22. 113 35 141 75 13 -88 
357 8 7 154 136 28 46 91 91 175 63 45 -108 
665 164 7 475 158 25 14 250 86 329. 225 72 -297 

65 
2 115 19 8 66 28 15 14 21 - 

116 19 8 65 32 16 11 9 54 2 2 -35 
51 

13 1. 6 -- 
611 16 9 215 215 78 I12 8. 301 ~ 2~ -120 

595 667 163 10 477 159 25 16 251 226 -- 2 

-4 

9 

2 2 

2 

33 
T T  

6 9 y T  61 I f - -  IS 

85 lu - 61 0 g -- I5 
9 63 E 54 ", -2 157 

2 

2 2 

2 2 2 

187 4 1 66 57 32 39. 90 2 ??2. 1 3  
2 2 2 

51 _- 

361 13 8 118 92 66 93 92 26 -1 -T 
146 6 9 52 40 25 38 e 46 2 

188 4 11 65 62 32 40 ~ ~ ~-9  36 , 4 I 

2 

5 

8. Conclusions 

We have studied the structural zeros of 3 j  coefficients. In previous works, these zeros 
have been studied and classified according to their degree n. An extended computer search 
for such zeros indicated that a new parameter, the recurrence order m, could be helpful 
in classifying the structural zeros. This new parameter was defined, and the equations for 
zeros of order m = 1 were completely solved. Zeros of order 2 and 3 were c1assified;and 
infinite sequences of solutions were presented; these solutions are not, in general, complete. 
Regarding the degree of non-trivial zeros, it was known that there were an infinite number 
of degree 1 and 2. Here, the explicit computer list of zeros was helpful in finding infinite 
sequences of zeros of degree 3 and 4. It is not known whether the number of zeros of 
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degree n,  where n > 4, is finite or infinite. 
Table 4 presents the frequency of zeros for J-intervals emphasizing the ‘degree versus 

order’ theme of this paper. If we consider the zeros with n > m and arrange them according 
to increasing values of m, it appears that there are no zeros of high order. In the range of 
this search, there is only one zero of order m = 6 with degree n = 9, there are two zeros 
of order m = 5 with degree n = 6 and five zeros of order m = 4 three with n = 5, one 
for n = I and one for n = 11. Conversely, if we consider the set of zeros with n < in and 
arrange them according to n, then it appears that there are no zeros of high degree. In this 
set (for J < 900), we found only one zero with n = 10, two with n = 9, three with n = 8, 
and a small number with n = 7 and n = 6; all of these are given in table 5. 

The reader interested in a detailed analysis of order 2 and 3 zeros, and in a further 
classification of zeros of degree 2, 3 and 4, is referred to a separate report (Raynal and Van 
der Jeugt 1993). For 6 j  coefficients, a similar analysis is now being performed and we 
hope this will be the subject of a future paper. 

All the manipulations of algebraic expressions have been done using the AMP language 
written by Drouffe (1982). 
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